Antibacterial Surface Treatment for Orthopaedic Implants
نویسندگان
چکیده
It is expected that the projected increased usage of implantable devices in medicine will result in a natural rise in the number of infections related to these cases. Some patients are unable to autonomously prevent formation of biofilm on implant surfaces. Suppression of the local peri-implant immune response is an important contributory factor. Substantial avascular scar tissue encountered during revision joint replacement surgery places these cases at an especially high risk of periprosthetic joint infection. A critical pathogenic event in the process of biofilm formation is bacterial adhesion. Prevention of biomaterial-associated infections should be concurrently focused on at least two targets: inhibition of biofilm formation and minimizing local immune response suppression. Current knowledge of antimicrobial surface treatments suitable for prevention of prosthetic joint infection is reviewed. Several surface treatment modalities have been proposed. Minimizing bacterial adhesion, biofilm formation inhibition, and bactericidal approaches are discussed. The ultimate anti-infective surface should be "smart" and responsive to even the lowest bacterial load. While research in this field is promising, there appears to be a great discrepancy between proposed and clinically implemented strategies, and there is urgent need for translational science focusing on this topic.
منابع مشابه
Calcium-Based, Antibiotic-Loaded Bone Substitute as an Implant Coating: A Pilot Clinical Study
Background: Implant-related infections remain a major complication after orthopaedic surgery. Antibacterial coating of implants may prevent bacterial adhesion and biofilm formation. However, in spite of extensive preclinical research in the field, antibacterial coatings to protect orthopaedic implants in the clinical setting remain particularly few. The aim of the present study is to evaluate t...
متن کاملHeat Treatment Of Cobalt-Base Alloy Surgical Implants With Hydroxyapatite-Bioglass For Surface Bioactivation
ASTM F-75 Cobalt-base alloy castings are widely used for manufacturing orthopedic implants. This alloy needs both homogenization and solutionizing heat treatment after casting, as well as bioactivation of the surface to increase the ability of tissue bonding. In this study, ASTM F-75 Cobalt-base substrate was heat treated at 1220°C for 1 hour in contact with Hydroxyapatite-Bioglass powder in or...
متن کاملCefazolin embedded biodegradable polypeptide nanofilms promising for infection prevention: a preliminary study on cell responses.
Implant-associated infection is a serious complication in orthopedic surgery, and endowing implant surfaces with antibacterial properties could be one of the most promising approaches for preventing such infection. In this study, we developed cefazolin loaded biodegradable polypeptide multilayer nanofilms on orthopedic implants. We found that the amount of cefazolin released could be tuned. A h...
متن کاملRevision of Anatomic Total Shoulder Arthroplasty to Hemiarthroplasty: Does it work?
Background: The projected increase in revision shoulder arthroplasty has increased interest in the outcomes of theseprocedures. Glenoid component removal and conversion to a hemiarthroplasty (HA) is an option for aseptic glenoidloosening after anatomic total shoulder arthroplasty (aTSA).Methods: We identified patients who had undergone revision shoulder arthroplasty over a 15-...
متن کاملBioactive coating of titanium surfaces with recombinant human β-defensin-2 (rHuβD2) may prevent bacterial colonization in orthopaedic surgery.
BACKGROUND A promising strategy to prevent infections around orthopaedic titanium implants is to use naturally occurring cationic antimicrobial peptides (CAMPs) such as the human β-defensin-2 as antibacterial coatings. Human antimicrobial peptides represent a part of the innate immune system and have a broad antimicrobial spectrum against bacteria, fungi, and viruses. METHODS In the present s...
متن کامل